Кинетика ультрарелятивистской лазерной плазмы

Жидков А.Г.

Институт Лазерных и Плазменных технологий НИЯУ МИФИ

Релятивистская лазерная плазма является сравнительно новым объектом исследований, который обязан своим появлением развитию и совершенствованию мощных фемто- и пикосекундных лазеров. За последние пару декад мощность лазеров непрерывно росла от нескольких Тераватт до сверх Петтоваттного уровня. Тенденция роста мощности лазеров остается постоянной, и в настоящее время. Плазма при это остается основным объектом взаимодействия такого уровня мощности лазерных импульсов с веществом. Сформированная при этом плазма с температурой в много миллиардов градусов является ультрарелятивистской и существенно отличатся от традиционной плазмы, в первую очередь появлением в ней значительно числа как классических, так и квантовых процессов, связанных со сверхсильными электромагнитными полями и характерных только для такой плазмы. Кинетика такой плазмы представляет в первую очередь научный интерес, но и вопросы практических результатов как всегда актуальны.

Современные лазерные системы

Характеристики релятивистской лазерной плазмы определяются как известно параметром $a_0 = eE_L/mc\omega$. «Релятивистская» граница $a_0 = 1$ достигается при интенсивностях лазерного излучения ~10¹⁷ (СО₂ лазер)- 10¹⁹ (Ti-Saph лазер) Втсм⁻².

Лазер	Энергия	Длительность	
Фемта-Луч	70 J	70 fs	
Pearl	24 J	43 fs	
ELF	200 J	0,7 ps	
Callisto	18J	60 fs	
Trident	100J	0.5 ps	
Hercules	17 J	50 fs	
Texas Petwatt	186J	165 fs	
LWIR (CO_2)	30 J	0.5 ps	
BELLA	40 J	40 fs	
Vulcan	500J	0.5 ps	
Astra Gemini	2x20J	40 fs	
LULI	30J	300fs	
LOA	2.5 J	25 fs	Интенсивность
Atlas	2 J	25 fs	
PHELIX	500 J	0.5 ps	$I=10^{23} Bmcm^{-2} (a_{2} \sim 200)$
LFEX	<10 kJ	1-10 ps	
J-KARREN	26 J	30 fs	можно считать
LAPLACIAN	5 J	<100 fs	достигнутой
GIST	30 (70) J	30 fs	
SIOM	12 J	25 fs	
ELI-NP (Romania)	2x10 PW	25-160 fs	

OPAL-75 PW in the USA, the XCELS-200 PW in Russia, the ELI-200 PW in Europe and the SEL-100 PW in China

Основные процессы в релятивистской лазерной плазме

- 1. Оптическая и полевая ионизация в дополнении к обычным процессам
- 2. Ускорение электронов и ионов сверхсильными полями
- 3. Мощное рентгеновское излучение (бетатронное, гармоники, комптоновское рассеяние)
- 4. Ядерные реакции

Рекорды:

Ускорение электронов в кильватерной волне~8 GeV (5pC)Ускорение протонов, фольги,~150 MeV (Ziegler, et al. Nat. Phys. 20, 1211 (2024))Мощность рентгеновского излучения (~1-3 keV)~10¹⁹ W/cm²

Практические результаты:

Фемтосекундный электронный микроскоп (1-10 МэВ) Электронные пучки, энергия ~300-600 МэВ, заряд ~20-30 рС Нейтронные пучки (LFEX, FELIX) Оптический инжектор ионов углерода для углеродной терапии

> На подходе полностью оптический XFEL. Оптические электронные пучки с энергий 300 МэВ серьезный конкурент гамма-излучению в работе с пролекарствами (pro-drug). Проблема стабильности становится ключевой.

Full optical, jitter free

Моделирование взаимодействия мощного лазерного излучения с плазмой

Существует несколько общепринятых кодов, основанных не методе частицы в ячейке. Некоторые из них: OSIRIS, FPlaser3D, FBPIC, WARP, EPOCH

Fplaser3D включает не только стандартную PIC схему Yee с коррекцией дисперсионного уравнения, но и кинетическую сетку, на которой вычисляются столкновения (упругие, ионизация, иные релаксационные процессы), полевая ионизация. Достигается это добавлением случайной силы в уравнение движения. Включена также классическая сила радиационного трения. Код протестирован на множестве задач за последние две декады.

Для ряда задач РЛП приходится использовать релятивистскую систему отсчета. (L->L/γ_R) Это нетривиальная задача. В случае с электронными пучками и плазмой удалось расширить FPlaser на произвольную систему отсчета. При этом найдены заметные отличия от работ Vay и др. D.O.Espinos, A. Zhidkov et al., Phys. Rev. Accelerators and Beams (2025)

Проблема здесь: ω_{pl} – инвариант, то ω_{l} -> $\omega_{l}/2\gamma_{R}$, при больших γ_{R} : $\omega_{l} < \omega_{pl}$?

Высокие интенсивности

Оставим пока процессы поляризации вакуума и vacuum breakdown. Что нового нас ожидает при достижении *I*=10²⁴ Втсм⁻², до которой осталось как кажется совсем немного.

$$g=ma_0/M^{\sim}1$$
 $E_y = B_z = A\cos(\omega t - kx)$, $u = p/Mc$

$$\frac{du_x}{dt} = \frac{u_y}{\gamma}g\cos(\tau - \tilde{x}),$$
$$\frac{du_y}{dt} = g\cos(\tau - \tilde{x}) - \frac{u_x}{\gamma}g\cos(\tau - \tilde{x})$$
$$u_y = g\sin(\tau - \tilde{x}), u_x = u_y^2/2$$

Ионы достигают релятивистских энергий при прямом ускорении лазерным импульсом. Это может привести к инжекции протонов в ускоряющую фазу кильватерного поля.

Остальные кинетические процессы в целом могут меняться только колличественно.

Расчет методом частицы в ячейке с учетом силы радиационного трения.

Линейно поляризованные лазерные импульсы с длиной волны 1 мкн, длительностью 10 фс распространяются в направлении х (продольном) справа налево в пре-ионизированной полу-бесконечной плазме. Интенсивность лазерного импульса изменяется от 10²³ до 10²⁴ Вт/см², что соответствует *a*₀ от 10² до 10³. Интенсивности импульсов 10²³-10²⁴ Вт/см² в фокусе соответствуют энергиям от 0,75 кДж до 7,5 кДж и, соответственно, мощности от 75 до 750 ПВт.

Начальные условия для поперечных компонент полей принимаются как известное решение параксиальных уравнений с w₀=5 мкм и соответствующей рэлеевской длиной 75 мкм. При моделировании размер движущегося окна составляет (100 мкм) x(100 мкм) с высоким пространственным разрешением λ/200 в 2D и (30 мкм)x(30 мкм)x(30 мкм)с максимальным разрешением λ/50 в 3D. Плотность однородной плазмы являлась параметром в диапазоне от N_e =2N_{cr} до 100N_{cr}.

Трехмерное распределение плотности ионов (красный цвет) и интенсивности лазерного импульса (голубой цвет) при облучении лазерным импульсом с интенсивностью 10^{24} Втсм⁻² и длительностью 10 фс при t=300 фс. Начальная плотность N=5N_{cr}. Размеры окна XxYxZ =30 мкм x 30 мкм x30 мкм.

Некоторые результаты

Зависимость глубины проникновения лазерного импульса в плотную мишень в зависимости от ее плотности для лазерных импульсов 10²⁴ (1) и 10²³ (2) Втсм⁻².

Пространственное распределение поля лазерного импульса $I=10^{24}$ в плотную мишень в момент его остановки (а) плотность плазмы $N_e=2N_{cr}$ и время t=1300 фемтосекунд (б) плотность плазмы $N_e=100N_{cr}$ и время t=200 фемтосекунд. Вставка показывает распределение импульсов электронов в начальный момент облучения

Пространственное распределение поля лазерного импульса $I=10^{23}$ в плотную мишень в момент его остановки (а) плотность плазмы $N_{\rm e}=2N_{\rm cr}$ и время t=800 фемтосекунд (б) плотность плазмы $N_{\rm e}=10N_{\rm cr}$ и время t=200 фемтосекунд.

Пространственное распределение ионов в плазме $N_e = 2N_{cr}$ при распространении лазерного импульса 10^{23} Втсм⁻² (a) t = 300 (б) 500 и (в) 700 фемтосекунд.

Пространственное распределение плотности (в единицах N_{cr}) ионов (красное) и электронов (синее) в плазме с начальной плотностью $N_e=10N_{cr}$ облучаемой импульсом с интенсивностью 10^{24} Втсм⁻² при t=300 фемтосекунд с учетом (а) и без учета (б) силы радиационного трения.

Спектральные характеристики лазерных импульсов в момент их остановки в плазме для начальной плотности плазмы (а) $N_e = 5N_{cr} u$ (б) $N_e = 10N_{cr}$; черная кривая- $I = 10^{23}$ Втсм⁻² и красная кривая- $I = 10^{24}$ Втсм⁻². Вставка показывает спеткр при $\lambda < 1.5$ микрон.

Ускорение частиц

Распределение ускоренных электронов по энергии при интенсивности лазерного излучения 10²³ Втсм⁻² (а) и 10²⁴ Втсм⁻² (б) при начальной плотности (1) 2N_{cr} (2) 5N_{cr} (3) 10N_{cr}.

Высокие энергии электронов, но сложно формировать устойчивый моно-энергетичный пучок

Распределение ускоренных ионов по энергии при интенсивности лазерного излучения 10²³ Втсм⁻² (а) и 10²⁴ Втсм⁻² (б) при начальной плотности (1) 2N_{cr} (2) 5N_{cr}, (3) 10N_{cr}.

Аномальное ускорение ионов

Стандартное ускорение ионов

Излучение.

Можно ожидать реализации режима существенного влияния излучения на кинетику плазмы при *I*=10²⁴ Втсм⁻².

эффективность 4х10⁻⁵. При зависимости роста как /⁵ (*d*₀⁻⁵), энергия излучения должна сравнится с лазерной уже при энергии импульса в 1 кДж. Однако сила радиационного трения может внести коррективы.

Пробные частицы для расчета спектров

Заключение.

1. Дальнейшее увеличение мощности коротких лазерных импульсов имеет серьезное научное значение. Оценки показывают, что их развитие до энергий порядка 10 кДж в импульсе возможно, хотя и будет сопровождаться серьезными техническими трудностями.

2. Имеющиеся лазерные установки с энергией порядка 10-500 Дж также имеют серьезное практическое применение для развития полностью оптических техник ультра-быстрых измерений. Здесь вопросы стабильности и воспроизводимости процессов генерации быстрых частиц встают очень остро.

3. Хотя численные методы в значительной степени позволяют проводить моделирование основных кинетических процессов в релятивистской лазерной плазме, все еще остаются нерешенные проблемы и здесь. Такие как моделирование спектров коротковолнового излучения ab-initio, моделирование процессов в плазме большой протяженности и ряд других.

Спасибо за внимание!